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Abstract 
 
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two 

thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate 
are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of 
piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for 
two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by 
comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigat-
ing the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agree-
ment between the results of this paper and those of the finite element analyses validated the presented approach. 
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1. Introduction 

A new class of materials known as ‘functionally 
graded materials’ (FGMs) has emerged recently, in 
which the material properties vary continuously 
throughout the continuum and specifically in the 
plates along the thickness direction. In an effort to 
develop the super heat-resistant materials, Koizumi 
[1] first proposed the concept of FGM. These materi-
als are microscopically heterogeneous and are typi-
cally made from isotropic components, such as metals 
and ceramics.  

The laminated composite structures can be tailored 
to design advanced structures, but the sharp change in 
the properties of each layer at the interface between 
two adjacent layers causes large interlaminar shear 
stresses that may eventually give rise to the well 
known phenomenon known as delamination. Such 

detrimental effects can be mitigated by grading the 
properties in a continuous manner across the thick-
ness direction. For example, Teymur et al. [2] carried 
out a thermo-mechanical analysis of materials, which 
are functionally graded in two directions, and demon-
strated that the onset of delamination could be pre-
vented by tailoring the microstructures of the com-
posite piles. Thus, the use of FGM may become an 
important issue for developing advanced structures. 
Intensive research has already been reported on the 
buckling analysis [3], dynamic analysis [4], and 
nonlinear thermo-elastic analysis of structures made 
of FGM [5]. 

In the quest for developing lightweight, high per-
forming flexible structures, a concept emerged to 
develop structures with self-controlling and self-
monitoring capabilities. Expediently, these capabili-
ties of a structure were achieved by exploiting the 
converse and direct innate effects of the piezoelectric 
materials as distributed actuators or sensors, which 
are mounted or embedded in the structure [6]. Such 
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structures having built-in mechanisms for achieving 
self-controlling and/or self-monitoring capabilities are 
customarily known as ‘smart structures’. The concept 
of developing smart structures has been extensively 
used for active control of flexible structures during 
the past decade [7]. In this regard, the use of axisym-
metric piezoelectric actuators in the form of a disc or 
ring to produce motion in a circular or annular sub-
strate plate is common in a wide range of applications 
including micro-pumps and micro-valves [8, 9] de-
vices for generating and detecting sound [10], and 
implantable medical devices [11]. They may also be 
useful in other applications such as microwave micro-
switches where it is important to control distortion 
due to intrinsic stresses [12].  

Recently, considerable interest has also been fo-
cused on investigating the performance of FG plates 
integrated with piezoelectric actuators. For example, 
Ootao & Tanigawa [13] theoretically investigated the 
simply supported FG rectangular plate integrated with 
a piezoelectric plate subjected to transient thermal 
loading. A 3-D solution for rectangular FG plates 
coupled with a piezoelectric actuator layer was pro-
posed by Reddy & Cheng [14] using transfer matrix 
and asymptotic expansion techniques. Wang & Noda 
[15] analyzed a smart FG composite structure com-
posed of a layer of metal, a layer of piezoelectric and 
an FG layer in between, while in [16] a finite element 
model was developed for studying the shape and vi-
bration control of FG plates integrated with piezoelec-
tric sensors and actuators. Yang et al. [17] investi-
gated the nonlinear thermo-electro-mechanical bend-
ing response of FG rectangular plates that are covered 
with monolithic piezoelectric actuator layers on the 
top and bottom surfaces of the plate. They [18] also 
presented a large amplitude vibration analysis of a 
rectangular FG plate with surface-bonded piezoelec-
tric layers by using a semi-analytical method based on 
1D differential quadrature and Galerkin technique. 
Most recently, Huang & Shen [19] investigated the 
dynamics of an FG plate coupled with two monolithic 
piezoelectric layers at its top and bottom surfaces 
undergoing nonlinear vibrations in thermal environ-
ments. All the aforementioned studies focused on the 
rectangular-shaped plate structures.  

However, to the authors’ best knowledge, no re-
searches dealing with the free vibration characteristics 
of the circular FGM plate integrated with the piezo-
electric layers have been reported. Therefore, in con-
junction with our recent works [20, 21], we attempt to 

solve this problem, that is, to provide an analytical 
solution for free vibration of moderately thick circular 
FG plates with two full-sized surface-bonded piezo-
electric layers on the top and the bottom of the FG 
plate (see Fig. (1)). The formulations are based on 
first order shear deformation plate theory (FSDPT). A 
consistent formulation that satisfies the Maxwell 
static electricity equation is presented so that the full 
coupling effect of the piezoelectric layer on the dy-
namic characteristics of the circular FGM plate can be 
estimated based on the free vibration results. The 
physical and mechanical properties of the FG core 
plate are assumed to be graded continuously in the 
thickness direction according to the power-law distri-
bution in terms of the volume fractions of the con-
stituents, whereas the distribution of electric potential 
field along the thickness direction of piezoelectric 
layers is simulated by a sinusoidal function. The dif-
ferential equations of motion are solved analytically 
for clamped edge and simply supported edge bound-
ary condition of the plate. By use of some mathemati-
cal techniques these differential equations are trans-
formed to a sixth order ordinary differential equation, 
and finally by implementing the operator decomposi-
tion method on this equation, three Bessel types of 
equations are obtained which can easily be solved for 
the plate deflection, plate rotation, and consequently 
the potential function. The detailed mathematical 
derivations are presented. Numerical investigations 
are performed for FG plates with two surface-bonded 
piezoelectric layers for various piezo-layer thick-
nesses. Emphasis is also placed on investigating the 
effect of varying the gradient index of FG plate on the 
free vibration characteristics of the structure. For 
some specific cases, obtained results were cross 
checked with the existing literature and, furthermore, 
verified by those obtained from three-dimensional 
finite element analyses. 
 

2. FG and piezoelectric materials 

2.1. Functionally graded materials (FGM) 

Several available analytical and computational 
models have discussed the issue of finding suitable 
functions for the material properties, and there are 
several criteria for selecting them. They are desired to 
be continuous, simple and should have the ability to 
exhibit curvature, both ‘‘concave upward’’ and ‘‘con-
cave downward’’ [22]. In this study the simple power 
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law, which has all the desired properties, is used. 
Nowadays not only can FGM easily be produced, but 
one can control even the variation of the FG constitu-
ents in a specific way. For example, in an FG material 
made of ceramic and metal mixture, we have; 

 
1m cV V+ =   (1) 

 
In which Vc and Vm are the volume fraction of the 

ceramic and metallic part, respectively. Based on the 
power law distribution [23], the variation of Vc vs. 
thickness coordinate (z) with its origin placed at the 
middle of thickness, can be expressed as: 

 
( 2 1 2) , 0g

c fV z h g= + ≥ ,   (2) 
 

in which 2hf is the FG core plate thickness, g is the 
FGM Volume fraction index (see Fig. (1)). 

Note that the variation of both constituents of ce-
ramics and metal is linear when g=1. Moreover, for 
g=0, a fully ceramic plate is intended. All other me-
chanical, physical and thermal properties of FGM 
media follow the same distribution as for Vc. We as-
sume that the inhomogeneous material properties, 
such as the modulus of elasticity E and the density ρ 
change within the thickness direction z based on 
Voigt’s rule over the whole range of the volume frac-
tion [24] as follows; while the Poisson ratio υ is as-
sumed to be constant in the thickness direction [25] 
as: 

 
( ) ( ) ( )c m c mE z E E V z E= − +  
( ) ( ) ( )c m c mz V zρ ρ ρ ρ= − +  
( )zν ν=   (3) 

 
where subscripts m and c refer to the metal and ce-
ramic constituents, respectively. After substituting Vc 
from Eq. (2) into Eqs. (3), material properties of the 
FGM plate are determined in the power law form 
which are the same as those proposed by Reddy & 
Praveen [23]: 

 
( ) ( )( 2 1 2)g

c m f mE z E E z h E= − + +  

( ) ( )( 2 1 2)g
c m f mz z hρ ρ ρ ρ= − + +   (4) 

 
2.2. Piezoelectric materials 

A constitutive 2D elasto-static relation for symme-
try piezoelectric materials in Cartesian coordinates is 
given as follows [26]: 

, , 1,2,3i ki k ji kC e E i j kσ ε= − =   (5) 

 
Based on well-known assumptions of FSDPT, Eq. 

(5) can be represented by [27]: 
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⎝ ⎠

 (6) 

 
in which iσ  and kε  represent the stress and strain 
components, respectively, and e represents the per-
meability constant of piezoelectric material and Ek 
indicates the components of the electric field. Also, cij 
is related to the matrix of modulus of elasticity, and 

E
ijC  are the components of the symmetric piezoelec-

tric stiffness matrix given as follows, and 31e  is the 
reduced permeability constant of piezoelectric mate-
rial and given as [28]: 

 
( )2

11 11 13 33
E E E EC C C C= −   ( )2

12 12 13 33
E E E EC C C C= −  

31 31 13 33 33
E E Ee e C e C= −  

 
Moreover, the electric displacement-strain relation 

for the piezoelectric material is given by [26]: 
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  (7) 

 
in which Di (i=1,2,3) represents the components of an 
electric displacement, 11Ξ , 33Ξ  are the symmetric 
reduced dielectric constants of piezoelectric layer and 
given as [28]: 

 
)( 33

2
333333
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in which 33Ξ , 11Ξ  are the dielectric constants 
(permittivity). 
 

3. Constitutive relations for an FG plate and 
piezoelectric layers under an electric poten-
tial field 

3.1 FSDPT based strain and stress field in circular 
FGM plate  

Usually, in the analysis of thick circular plate, the 
first order shear deformation plate theory is used in 
which the effect of the shear deformation and the 
rotary inertia cannot be omitted. It is assumed that (a) 
there is no “thickness stretch” of the plate, and (b) 
straight material lines that are perpendicular to the 
mid-plane in the undeformed state remain straight in 
the deformed state even though they may not remain 
perpendicular to the mid-plane. According to this 
theory, the displacement fields of the plate in the cy-
lindrical coordinate shown in Fig. (1) are given as 
[29]: 

 
( , , , ) ( , , )z zu u r z t w r tθ θ= =   (8) 
( , , , ) ( , , )r r ru u r z t z r tθ ψ θ= =   (9) 
( , , , ) ( , , )u u r z t z r tθ θ θθ ψ θ= = −   (10) 

 
where uz, ur, and uθ are the displacements of the plate 
in the transverse, radial, and tangential direction, re-
spectively; w is the transverse displacement of the 
mid-plane; and ψr and ψθ are the rotations of vertical 
lines perpendicular to the mid-plane, measured on the 
z–r and z–θ planes, respectively. 

It is also assumed that the poling direction of the 
piezoelectric material is in the z-direction. A differen-
tial strain can be induced in case of applying external 
electric potential across the piezoelectric layer result-
ing in bending of the plate. The strain of the FGM 
plate and piezoelectric layer in the radial and tangen-
tial directions and the shear component are given by 
[30]: 

 
r r

rr
u z
r r

ψε ∂ ∂= =
∂ ∂

  (11) 

( )r ru u z
r r r r

θ θ
θθ

ψ ψε
θ θ

∂ ∂= + = +
∂ ∂

  (12) 

( )r r
r

u u u z
r r r r r r

θ θ θ θ
θ

ψ ψ ψγ
θ θ

∂ ∂ ∂ ∂= + − = − +
∂ ∂ ∂ ∂

  (13) 

r z
rz r

u u w
z r r

γ ψ∂ ∂ ∂= + = +
∂ ∂ ∂

  (14) 

z
z

u u w
z r r
θ

θ θγ ψ
θ θ

∂ ∂ ∂= + = +
∂ ∂ ∂

  (15) 

 
The stress components in the FGM plate in terms 

of strains or component of displacement field based 
on the generalized Hooke’s Law are [30]: 

 

2 2

( ) ( )( )
1 1

f r r
rr rr

E z zE z
r r r

θ
θθ

ψ ψ ψσ ε νε ν
ν ν θ
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( )
2 2( ) ( )

2 1 2(1 )
f

rz rz r
E z E z w

r
τ κ γ κ ψ

ν ν
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  (19) 

( )
2 2( ) ( )

2 1 2(1 )
f
z z

E z E z w
rθ θ θτ κ γ κ ψ

ν ν θ
∂⎡ ⎤= = +⎢ ⎥+ + ∂⎣ ⎦

  (20) 

 
where E (z) the Young's modulus of the FGM mate-
rial is expressed in Eq. (4) and the shear factor (κ ) 
employed in Mindlin’s plate model to correct for the 
shear modulus, chosen as 12π here [29]; more-
over, the superscript (f) indicates the variable in the 
FG core plate.  

 
3.2 The electric potential, electric intensity, flux 

density and strain-stress relations in the piezo-
electric layers  

Two piezoelectric layers are attached to the FG 
plate and are intended to be used as an actuator or 
sensor to determine the natural frequencies of a vi-
brating coupled plate. There are several different 
models representing the input electric potential for 
such a piezoelectric layer. In this paper we decided to 
adopt the following sinusoidal function for electric 
potential proposed by Liu et al. [31], which is appro-
priate for free vibrations of the proposed system: 

 
( )
( )

( , , )sin ( )
( , , , )

( , , )sin ( )

f p f f p

f p f p f

r t z h h h z h h
r z t

r t z h h h h z h

ϕ θ π
φ θ

ϕ θ π

⎧ − ≤ ≤ +⎪= ⎨
− − − − ≤ ≤−⎪⎩

  

 (21)  
where, as indicated before, z is measured from the 
mid-plane of the plate in the transverse direction. It is 
to be noted that the assumed potential function satis-
fies the boundary condition that electric potential 
vanishes at the internal surfaces z=± hf and the exter-
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nal surfaces z=± ( hf +hp).  
Based on the assumption of electric potential distri-

bution across the thickness direction shown in Eq. 
(21), the components of electric field intensity E and 
electric flux density D can be written in the cylindri-
cal coordinate as [32]: 

 
( )

sin f
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p

z h
E

r r h
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The stress-strain-electric field intensity relations in 

the piezoelectric layers in cylindrical coordinates 
referred to Eq. (6) can be written as: 

 

11 12 31
p E E

rr rr zC C e Eθθσ ε ε= + −   (28) 

12 11 31
p E E
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55 15
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2
55 15

p E
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4. Derivation of the governing differential 
equations of the piezoelectric coupled FGM 
circular plate 

In order to obtain the governing differential equa-
tion of the coupled circular plate, we begin with resul-
tant moments and resultant shear force components as 
[27]:  

2f p f f p

f p f f

h h h h hf p
rr rr rr rrh h h h

M z dz z dz z dzσ σ σ
+ +

− − −
= = +∫ ∫ ∫   

2f p f f p

f p f f

h h h h hf p

h h h h
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2f p f f p

f p f f
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Q dz dz dzτ τ τ
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2f p f f p

f p f f

h h h h hf p
z z zh h h h
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− − −
= = +∫ ∫ ∫   

 
Now, by substituting the stress components in 

terms of displacement components Eqs. (16)-(20) and 
Eqs. (28)-(32) in Eqs. (33) and carrying out the inte-
grations, one can obtain the resultant moments and 
shear force components caused by the stresses as 
[30]: 
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where the coefficients of d1, d2 and A3 in the above 
equations are related to plate stiffness and are given 
by 
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It is to be noted that Mrr, Mrθ, Mθθ, Qr and Qθ must 

satisfy the following dynamic equilibrium equations 
[31]: 
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where ρf and ρp are material densities of the FGM 
plate and piezoelectric layer, respectively. 

Substituting Eqs. (34) into Eqs. (35)-(37), one can 
get the equations of motion: 

 
2

3 6 7 2( ) 0r r wA w A A
r r r t

θψ ψ ψ ϕ
θ

∂ ∂ ∂∆ + + + − ∆ − =
∂ ∂ ∂

 (38)  

1 2

3 1 2 2 2( )

r r
r

r
r

A A r
r r r r r

wA d d
r r r

θ

θ

ψ ψ ψψ
θ
ψ ψψ

θ

⎛ ⎞∂ ∂ ∂⎛ ⎞∆ + + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
∂ ∂⎛ ⎞ ⎛ ⎞− + − + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (39) 

2

2 1 5 42 2 0r rA A A A
r r r r t

θψ ψ ϕ ψ
θ

∂ ∂ ∂ ∂− − + − =
∂ ∂ ∂ ∂

   

1 2

3 1 2 22
2

r r

r

A A
r r r r

wA A
r r r

θ
θ

θ
θ

ψ ψ ψψ
θ θ

ψ ψψ
θ θ

∂ ∂ ∂⎛ ⎞∆ + + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞ ⎛ ⎞− + + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠  

2

5 4 2 0A A
r t

θϕ ψ
θ

∂ ∂+ − =
∂ ∂

  (40)  

 
where the Laplace operator in polar coordinate sys-
tem is given by 

 
2 2

2 2 2r r r r θ
∂ ∂ ∂∆ = + +
∂ ∂ ∂

 

 
A1, A2, A3, A4, A5, A6 and A7 are constants governed 

by material properties and structural geometry, given 
in Appendix A.  

Note that all of the electrical variables primarily 
must satisfy the Maxwell's equation, which requires 
that the divergence of the electric flux density van-
ishes at any point within the media. This condition 
can be satisfied by enforcing the integration of the 
electric flux divergence across the thickness of the 
piezoelectric layers to be zero for any r and θ as [32]: 

( ). 0f p f p

f f

h h h h r z
h h

rD D DDdz dz
r r r z

θ

θ
+ + ⎛ ⎞∂ ∂ ∂∇ = + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫   

 
Now, by substituting Eqs. (25 to 27) into the above 

equation we arrive at: 
 

( )2 2
11 15 31

2
33 33

2
15

33

2

0
2

p p r r

p

h h e e
r r r

h e
w

θψ ψ ψϕ ϕ
π π θ

π

Ξ + ∂ ∂⎛ ⎞− ∆ + + + +⎜ ⎟Ξ Ξ ∂ ∂⎝ ⎠

+ ∆ =
Ξ

 (41)  

 

5. Solutions method  

In the four differential equations of motion, Eqs. 
(38)-(41), there are four independent variables w, 

rψ , θψ  and φ that need to be defined. The solution 
procedure is described hereafter. Eliminating rψ , θψ  
and ϕ  from Eqs. (38), (39), (40) and (41) yields a 
decoupled six-order partial differential equation in 
terms of w only, namely, 

 
2 4

1 2 3 42 4

2 2 4

5 6 72 2 4 0

w wP w P w P P
t t

w w wP P P
t t t

⎛ ⎞ ⎛ ⎞∂ ∂∆∆∆ + ∆∆ + ∆∆ + ∆⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂+ ∆ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

  (42)  

 
where the coefficients, P1, P2, P3, P4, P5, P6 and P7, 
are given in Appendix B.  

To solve Eq. (42) for w we first assume that [28] 
( )

1( , , ) ( ) j m tw r t w r e θ ωθ −=   (43)  
Substituting Eq. (43) into Eq. (32) and after cancel-

ling the ( )j m te θ ω−  term one would get: 
 

( ) ( )
( )

2 4 2
1 1 2 3 1 4 5 1

4 2
7 6 1 0

P w P P w P P w

P P w

ω ω ω

ω ω

∆∆∆ + − ∆∆ + − ∆

+ − =
 (44)  

 
where ∆  is a given by; 

 
2 2

2 2

d d m
dr rdr r

∆ = + −  

 
Eq. (44) can be solved by method of decomposition 

operator and noting that the 1w  is non-singular at 
the center of the plate; the general solution of Eq. (44) 
yields  
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1 1 1 1 2 2 2

3 3 3

( ) ( ) ( )
( )

m m m m

m m

w r C Z r C Z r
C Z r

α α
α

= +
+

  (45) 

 
where  

 

1 1xα = , 2 2xα = , 3 3xα =   (46) 

 
in which x1, x2 and x3 are the roots of the following 
cubic characteristic equation, 

 
3 2 2 4 2

1 2 3 4 5

4 2
7 6

( ) ( )

0

Px P P x P P x

P P

ω ω ω
ω ω

+ − + −

+ − =
  (47)  

 
and 
 

( ) , 0
( ) ( , ) ( 1,2,3)

( ) , 0
m i i

im i im i
m i i

J r x
Z r Z r i

I r x
α

α α
α

<⎧⎪= = =⎨ >⎪⎩
 (48) 

 
Note that the second type Bessel functions have 

been omitted from the solution as they become singu-
lar at the center of the plate. 

Now we assume that the rotations rψ and θψ  are 
expressed in terms of the potential functions 

( , , )r tθΦ and ( , , )H r tθ  as 
 

r
H

r r
ψ

θ
∂Φ ∂= +
∂ ∂

H
r rθψ
θ

∂Φ ∂= −
∂ ∂

  (49) 

 
After substituting the above relations into Eqs. (39) 

and (40), we get:  
 

( )
2

1 2 3 4 3 52

2

1 3 4 2 0

d d A A A w A
r t

HA H A H A
r t

ϕ

θ

⎡ ⎤∂ ∂ Φ+ ∆Φ − Φ − − +⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂ ∂+ ∆ − − =⎢ ⎥∂ ∂⎣ ⎦

 (50) 

( )
2

1 2 3 4 3 52

2

1 3 4 2 0

d d A A A w A
r t

HA H A H A
r t

ϕ
θ
⎡ ⎤∂ ∂ Φ+ ∆Φ− Φ− − +⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂ ∂− ∆ − − =⎢ ⎥∂ ∂⎣ ⎦

 (51) 

 
By applying the operator ∂/r∂θ to Eq. (50), (1/r+ 

(∂/r ∂r)) to Eq. (51), and subtracting the results, we 
obtain a decoupled equation in terms of H, 

 
2

1 3 4 2 0HA H A H A
t

⎛ ⎞∂∆ ∆ − − =⎜ ⎟∂⎝ ⎠
  (52) 

Similarly, application of the operator (1/r+ (∂/r ∂r)) 
to Eq. (50), ∂/r ∂θ to Eq. (51), and adding the results 
yields another decoupled equation free of H, 

 

( )
2

1 2 3 4 3 52 0d d A A A w A
t

ϕ
⎡ ⎤∂ Φ∆ + ∆Φ− Φ− − + =⎢ ⎥∂⎣ ⎦

 (53) 

 
It is assumed thatΦ , H, and ϕ  take the form 
 

( )ˆ( , , ) ( ) i m tr t r e θ ωθ −Φ = Φ  
( )ˆ( , , ) ( ) i m tH r t H r e θ ωθ −=  (54) 

( )ˆ( , , ) ( ) i m tr t r e θ ωϕ θ ϕ −=    
 

where ˆ( )rϕ , ˆ ( )rΦ ,and ˆ ( )H r are amplitudes of 
( , , )r tϕ θ , ( , , )H r tθ and ( , , )r tθΦ , respectively. 

Substituting Eqs. (43) and (54) into Eqs. (38), (52), 
(53) and (41) reduces to 

 
2

3 3 1 7 1 6
ˆ ˆ 0A A w A w Aω ϕ∆Φ + ∆ + − ∆ =   (55) 

( )2
1 3 4

ˆ ˆ 0A H A A Hω∆ − − =   (56) 

( ) ( )2
1 2 3 4 3 1 5

ˆ ˆ ˆ 0d d A A A w Aω ϕ+ ∆Φ − − Φ − + =   (57) 

8 1 9 10
ˆ ˆ ˆ 0A w A Aϕ ϕ∆Φ + ∆ − ∆ + =   (58) 

 
where the coefficients, A8, A9, and A10, are given in 
Appendix A. Solving Eq. (56) for Ĥ gives 

 

6 6 1 7 7 1
ˆ ( ) ( ) ( )a m a mH r C Z r C Z rβ β= +   (59) 

 
where 6aC and 7aC are arbitrary constants and 

 
2

3 4
1 1 1

1

, A AF F
A

ωβ −= =   (60) 

1 1
6 1

1 1

1 1
7 1

1 1

( ), 0
( ) ,

( ), 0

( ), 0
( )

( ), 0

m
m

m

m
m

m

J r F
Z r

I r F

Y r F
Z r

K r F

β
β

β

β
β

β

<⎧⎪= ⎨ >⎪⎩
<⎧⎪= ⎨ >⎪⎩

  (61) 

 
To avoid singularity at the center of the plate C7a=0. 

Thus, Eq. (59) is reduced to 
 

6 6 1
ˆ ( ) ( )a mH r C Z rβ=   (62) 

 
Solving Eqs. (55), (57) and (58) for Φ̂  yields 
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( )

( ) ( )

( )
( )( )

( )
( )( )

1 9 3 6 8
12

3 4

2
1 7 9 3 10 35 9 3 6 8

2
2 3 4

2
3 5 8 5 9 7 6 10 3

12
26 3 9 3 4

2 2
10 3 10 1 10 2 5 7

12
6 3 9 3 4

ˆ ( )

1

1
G A A A A

r w
A A

G A A A A AA A A A A
G A A

A A A A A A A A Aw
GA A A A A

A A A d A d A A
w

A A A A A

ω

ω
ω

ω
ω

ω
ω

χ
⎧ −⎪Φ = ∆∆⎨ −⎪⎩

− −⎡ −
+ +⎢ −⎢⎣

⎤− ⎡ −⎥− ∆ + ⎢⎥− − ⎣⎦
⎫⎤+ + − ⎪⎥− ⎬

⎥− − ⎪⎦ ⎭

 (63) 

 
Substituting Eqs. (45), (54), (62) and (63) into Eq. 

(49) and replacing iC6a by C6 yields 
 

} ( )

3

1 6
1

( ) ( )( , , )

( )6 6 1

n n n nm n
n

i m t

x C Z r

e

r tr

C mZ r rm
θ ω

χ χ α αψ θ

β
=

−

⎧ ′⎨
⎩

=

+

∑   (64) 

( )

3

1
1

6 1 6 1( )

( , , ) ( ) ( )6n

i m t
m

m

C Z r e

r t x C Z r rn n nm n

θ ω

χ

β β

ψ θ χ αθ =

−

⎧
⎨
⎩

⎫⎪′ ⎬
⎪⎭

=

+

∑   (65) 

where the coefficients 1χ and 6( )nxχ are given in Ap-
pendix C. Substituting Eq. (63) into Eq. (55), 
ˆ( )rϕ yields 

 
2

1 2 3 4 3
1

5 5 5

ˆ ˆˆ( ) ( ) ( ) ( )d d A A Ar r r w r
A A A

ωϕ + −= − ∆Φ + Φ +  (66) 

 
Substituting Eqs. (45), (63) and (66) into Eq. (52) 

results in 
 

3
2

1 3 4
1

1 2 5 3 5

( , , ) ( )(6
)

( )( )

n

i i

A A

d x d x A A A

n

r t xn

i m tC Z r enm n

χ ωϕ θ χ

θ ωα

=

⎡ − −⎢⎣

− + ⎤⎦

=

−

∑
  (67) 

 
5.1 Frequencies determination by boundary condi-

tions  

In the preceding sections we obtained explicit ex-
pressions for transverse displacement w (r,θ,t), rota-
tions ( , , )r r tψ θ , ( , , )r tθψ θ , and electric poten-
tial ( , , )r tϕ θ , which are all functions of the frequency 
ω. To determine the frequency, the boundary condi-

tions must be employed. Two kinds of boundary con-
ditions, clamped edge and simply supported edges, 
are addressed. For simply supported edges, depending 
upon the in-plane behavior in tangent plane at the 
edge r=r0, two types: hard type and soft type will be 
considered. These correspond to the case when the 
rotation of the boundary edge in the plane tangent to 
the plate structure’s mid-surface, normal to the re-
spective edge ( θψ ) is either unrestrained (soft type) 
or completely restrained (hard type).  

 
5.1.1 Clamped edge  
For clamped edge at r=r0, both the transverse dis-

placement w and rotations rψ and θψ vanish, namely, 
 

0( , , ) 0w r tθ =  

0( , , ) 0r r tψ θ =  (68) 

0( , , ) 0r tθψ θ =   
 

where r0 is radius of the plate. If the plate is isolated 
at the edge, the electrical flux conservation equation 
is given by 

 

0( , , ) 0f p

f

h h

rh
D r t dzθ

+
=∫   (69) 

 
Substituting the solutions obtained in the preceding 

sections for w, rψ , θψ and ϕ into Eqs. (68) and (69) 
and some simplifications yields 

 
( ) ( ) ( )
11 12 13 1
( ) ( ) ( ) ( )
21 22 23 26 2

( ) ( ) ( ) ( )
331 32 33 36

( ) ( ) ( )
641 42 43

0 0
0
0
00

a a a

a a a a

a a a a

a a a

s s s C
s s s s C

Cs s s s
Cs s s

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

  (70) 

 
where ( )a

ijs , ( )
26
as and ( )

36
as  (i=1,2,3,4; j=1,2,3), are 

functions of the frequencies, given in Appendix D. 
Non-trivial solution for C1, C2, C3, and C6 implies that 
the determinant of the coefficients matrix of Eq. (70) 
vanishes, namely, 

 
( ) ( ) ( )
11 12 13

( ) ( ) ( ) ( )
21 22 23 26

( ) ( ) ( ) ( )
31 32 33 36

( ) ( ) ( )
41 42 43

0

0

0

a a a

a a a a

a a a a

a a a

s s s

s s s s

s s s s

s s s

=   (71) 

 
Solving Eq. (71) for ω gives the frequencies of 
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flexural free vibrations. 

 
5.1.2 Simply supported edge (hard type)  
At the edge r=r0, the transverse displacement w, 

the resist bending moment in the z–r plane Mrr, and 
the rotation in tangent plane θψ  vanish: 

 
0( , , ) 0w r tθ =  

0( , , ) 0rrM r tθ =  (72) 

0( , , ) 0r tθψ θ =   
 
Of course, Eq. (69) should also be satisfied. If the 

solutions for w, rψ , θψ and ϕ are substituted into 
Eqs. (72) and (69), four linear equations in terms of 
the arbitrary constants, C1, C2, C3, and C6 are ob-
tained: 

 
( ) ( ) ( )
11 12 13 1
( ) ( ) ( ) ( )
21 22 23 26 2

( ) ( ) ( ) ( )
331 32 33 36

( ) ( ) ( ) ( )
641 42 43 46

0 0
0
0
0

b b b

b b b b

b b b b

b b b b

s s s C
s s s s C

Cs s s s
Cs s s s

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

  (73) 

 
where the coefficients, ( )b

ijs , ( )
26
bs , ( )

36
bs  and ( )

46
bs , 

(i=1,2,3,4; j=1,2,3), are given in Appendix E. To 
obtain non-trivial solutions for C1, C2, C3, and C6, the 
determinant of the coefficients matrix of Eq. (73) 
must vanish, from which the frequencies, ω, can be 
obtained. 
 

5.1.3 Simply supported edge (soft type)  
At the edge r=r0, the transverse displacement w, 

the resist bending moment in the z–r plane and the z–
θ plane, Mrr and Mrθ (instead of θψ ), vanish: 

 
0( , , ) 0w r tθ =  

0( , , ) 0rrM r tθ =  (74) 

0( , , ) 0rM r tθ θ =   
 
Obviously, Eq. (69) should be satisfied again. If the 

solutions for w, rψ , θψ and ϕ  are substituted into 
Eqs. (74) and (69), Eq. (73) is obtained again, but the 
coefficients, ( )

3
b
ns , ( )

36
bs  (n=1, 2, 3), are replaced by 

( )
3

c
ns and ( )

36
cs  which are defined in Appendix F. The 

frequencies, ω, can be obtained again from the condi-
tion that the determinant of the coefficients matrix 
must vanish.  

5.2 Mode shapes  

It is noted that only three of the four equations in 
Eqs. (70) and (73) are linearly independent. Thus, C1, 
C2, and C6 can be expressed in terms of C3 by solving 
the first equations of Eqs. (70) and (73), as follows: 

 
1 1 3CC C C=  

2 2 3CC C C=  (75) 

6 6 3CC C C=   
 
where the coefficients, CC1, CC2, and CC6, are given in 
Appendix G. Substituting Eq. (75) into the solutions 
for w, rψ , θψ and ϕ , which we obtained in the 
preceding sections, yields the mode shapes of w, rψ , 

θψ and ϕ , respectively. The normal modes of the 
transverse displacement 1( , )w r θ are given by 

 

( )
3

1
1

sin( )
( , )

cos( )Cn np n
n

m
w r C Z r

m
θ

θ α
θ=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑   (76) 

 
where to get a close form we let CC3=1; CC1 and CC2 
are given in Appendix G.  

The normal modes of the rotation in the z–r plane 
are given by 

 
3

1 6
1

6 6 1

( ) ( )

sin( )
( )

cos( )

( , , ) n Cn nm n
n

C m

x C Z r

m
C mZ r r

m

r tr χ χ α

θ
β

θ

ψ θ
=

⎧ ′⎨
⎩

⎛ ⎞⎫
+ ⎬⎜ ⎟

⎭⎝ ⎠

= ∑
  (77) 

 
And the normal modes of the rotation in the tangent 

plane are given by 
 

3

1 6
1

6 1 6 1

( ) ( )

cos( )
( )

sin( )

( , , ) n Cn nm n
n

C m

x C Z r r

m
C Z r

m

r t mχ χ α

θ
β β

θ

ψ θθ =

⎧
⎨
⎩

⎛ ⎞⎫′+ ⎬⎜ ⎟−⎭⎝ ⎠

= ∑
  (78) 

 
Also the normal modes of the electric potential are 

given by 
 

( ){ }3

1 3 5
1

sin( )
cos( )

( , , ) ( )6

( )

n
A A

m
m

r t xn

C Z rCn nm n

χ

θ
θ

ϕ θ χ

α

=

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

=∑
  (79) 
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Before going further into the results and discus-
sions, primarily we have to make sure that the ob-
tained results are valid. To do this, initially for some 
special cases, results are compared with those given 
in the literature [28].  

In the next step, since there were no published re-
sults for the compound piezoelectric FGM plate, we 
decided to verify the validity of obtained results with 
those of FEM results. Our FEM model for piezo- FG 
plate is comprised of a 3D 8-noded solid element 
with: number of total nodes 26950, number of total 
elements 24276, 3 DOF per node (translation) in the 
host plate element and 6 DOF per node (3 translation, 
temperature, voltage and magnetic properties) in the 
piezoelectric element. 
 

6. Numerical examples and discussion  

In order to solve the above relations, in this section, 
two piezoelectric-bonded FGM plates are considered: 
a circular plate with clamped boundary condition, and 
a circular plate with hard type simply-supported 
boundary condition. The material parameters and 
geometry of the FGM plate and piezoelectric layers 
used in the numerical example are listed in Table. 1. 

The numerical solution for a three-layer laminated 
FGM plate shown in Fig. 1 is investigated. The pie-
zoelectric layers are poled in the thickness direction 
and both surfaces of each layer are short-circuited. 
The thickness of the FGM layer and piezoelectric 
layers is 20 and 2mm, respectively. The results are  

 
Table 1. Material properties and geometric size of the piezo-
electric coupled FGM plate. 
 

Property FGM Plate PZT4 
E (GPa) Ec = 205 11

EC = 132 

 Em = 200 33
EC = 115 

  12
EC = 71 

  13
EC = 73 

  55
EC = 26 

Density (kg/m3) ρc =8900 7500 
 ρm =7800  

e31 (C/m2)  −4.1 
e33 (C/m2)  14.1 
e15 (C/m2)  10.5 

11Ξ (nF/m)  7.124 
33Ξ (nF/m)  5.841 
r0 (mm)  600 
hf (mm)  10 
hp (mm)  2 

compared with those of FEA and the analytical model 
[28]. Two kinds of boundary conditions, i.e., clamped 
edge and simply supported edge, are investigated. 
Table 2 and Table 3 list comparisons of the frequen-
cies calculated for FGM plate and piezo-FGM plate 
by the FSDT-based model (proposed), the classical 
plate theory (CPT)-based model [28] and 3D FEA for 
clamped edge as well as simply supported edge 
boundary conditions. 

As one can see from Tables 2 and 3, the obtained 
results from the analytical method when g=0 (iso-
tropic steel plate) correspond closely with the results 
of reference [28] and FEM solution. As seen in these 
tables, the maximum difference of our solution with 
FEM is about 4.22% for the simply supported case 
and 1.50% for the clamped case. This difference can 
be described in a way that since the clamped edge BC 
is stiffer than the simply supported edge, it seems that 
the derived stiffness matrix (K) using variational 
method results in more accurate answers for clamped 
BC compared to the simply supported edge BC. 

After verification of the results, we start discussing 
the obtained results from the closed form solution and  

 

 
 

 
 
Fig. 1. Schematic representation of the FGM circular plate 
with two piezoelectric layers mounted on its upper and lower 
surfaces. 
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Table 2. Values of the first three resonance frequencies (Hz) for FGM plate and piezo-FGM plate in the case of clamped 
boundary condition for various values of power index. 
 

Power 
Index Mode no. FGM plate Coupled Piezo-FGM plate 

g m Present 
FSDPT 

Present 
(FEM) Difference (%) Wang et al. 

[28]  
Present 
FSDPT

Present 
(FEM) Difference (%) Wang et al. 

[28]  
0 138.45 139.29 0.60 138.42 143.70 144.75 0.73 143.64 
1 288.16 289.80 0.57 288.05 299.02 300.57 0.52 298.92 0 
2 472.61 473.48 0.18 472.59 490.51 492.74 0.45 490.37 
0 134.68 135.47 0.58 - 140.38 142.32 1.36 - 
1 280.27 281.86 0.56 - 292.14 296.04 1.32 - 1 
2 459.67 460.49 0.18 - 479.04 482.25 0.66 - 
0 132.76 133.68 0.69 - 138.67 140.71 1.45 - 
1 276.31 278.14 0.66 - 288.59 292.69 1.40 - 3 
2 453.17 454.42 0.28 - 473.22 476.80 0.75 - 
0 132.18 133.11 0.70 - 138.14 140.18 1.46 - 
1 275.08 276.95 0.68 - 287.47 291.60 1.42 - 5 
2 451.14 452.47 0.29 - 471.39 475.03 0.77 - 
0 131.91 132.83 0.69 - 137.89 139.93 1.46 - 
1 274.51 276.36 0.67 - 286.95 291.07 1.41 - 7 
2 450.21 451.51 0.29 - 470.53 474.16 0.77 - 
0 131.75 132.75 0.75 - 137.75 139.85 1.50 - 
1 274.20 276.20 0.72 - 286.66 290.75 1.41 - 9 
2 449.68 450.90 0.27 - 470.04 473.33 0.70 - 
0 131.70 132.60 0.68 - 137.70 139.72 1.45 - 
1 274.08 275.89 0.66 - 286.56 290.63 1.40 - 10 
2 449.50 450.74 0.28 - 469.89 473.45 0.75 - 

 
Table 3. The first three resonance frequencies (Hz) of the FGM plate and piezo FGM-plate in the case of simply supported 
boundary conditions for different values of power index. 
 

Power 
Index Mode no. FGM plate Coupled Piezo-FGM plate 

g m Present 
FSDPT 

Present 
(FEM) Difference (%) Wang et al. 

[28]  
Present 
FSDPT

Present
(FEM) Difference (%) Wang et al. 

[28]  
0 66.88 67.27 0.57 - 69.52 72.53 4.15 69.33 
1 188.39 189.58 0.63 - 195.56 198.68 1.57 195.36 0 
2 347.18 349.36 0.62 - 360.26 363.16 0.80 360.08 
0 65.05 65.37 0.49 - 67.88 70.81 4.14 - 
1 183.23 184.38 0.62 - 190.95 193.99 1.57 - 1 
2 337.60 339.78 0.64 - 351.80 354.60 0.79 - 
0 64.13 64.51 0.58 - 67.07 70.01 4.20 - 
1 180.63 181.95 0.72 - 188.62 191.79 1.65 - 3 
2 332.90 335.31 0.72 - 347.52 350.58 0.87 - 
0 63.84 64.23 0.60 - 66.81 69.75 4.22 - 
1 179.84 181.17 0.74 - 187.92 191.08 1.65 - 5 
2 331.41 333.87 0.74 - 346.17 349.29 0.89 - 
0 63.71 64.09 0.59 - 66.72 69.62 4.17 - 
1 179.46 180.79 0.74 - 187.57 190.73 1.66 - 7 
2 330.72 333.15 0.73 - 345.55 348.64 0.89 - 
0 63.64 64.01 0.57 - 66.61 69.48 4.13 - 
1 179.24 180.55 0.72 - 187.38 190.55 1.66 - 9 
2 330.34 332.82 0.75 - 345.20 348.38 0.91 - 
0 63.62 63.99 0.57 - 66.59 69.52 4.22 - 
1 179.18 180.48 0.72 - 187.32 190.45 1.64 - 10 
2 330.21 332.59 0.72 - 345.07 348.12 0.88 - 
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Fig. 2. Effect of power index on the natural frequency for the 
case of clamped boundary condition (first mode). 
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Fig. 3. Effect of power index on the natural frequency for the 
case of clamped boundary condition (third mode). 
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Fig. 4. Effect of power index on the natural frequency for the 
case of simply supported boundary condition (first mode). 
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Fig. 5. Effect of power index on the natural frequency for the 
case of simply supported boundary condition (third mode). 

 
the FEM results. A close inspection of the results 
listed in Tables 2 and 3 indicates that the amount of 
difference between analytical and FEM results for the 
natural frequencies in FGM plate alone in the all vi-
bration modes and for all values of k are less than 
similar results for the compound plate. 

In the next step we try to investigate the effect of 
FGM power index (g) on the natural frequencies of 
the compound plate. The obtained results in this table 
indicate that by increasing the value of k, the fre-
quency of system decreases for both types of bound-
ary conditions in all different vibrational modes. 
Moreover, this decreasing trend of frequency for 
smaller values of g is more pronounced; for example, 
in the case of clamped plate by increasing the value of 
g from 1 to 3) about 200%) the frequency of the first 
mode for the compound plate decreases by 1.23%, 
but by increasing g from 3 to 9 (about 200%) of the 
same plate and for the same mode, the frequency 
decreases by 0.66%. It is also observed that for the 
FGM plate in the case of simply supported boundary 
condition by increasing g from 0 to 3 the frequency 
decreases in the third mode of vibration about 4.12%, 
but by increasing g from 5 to 10, the frequency de-
creases for the same plate and the same mode about 
0.36%. In order to see better the effect of g variations 
on the natural frequencies of the different plates, Figs. 
2 to 5 also illustrate these variations only for the first 
and third mode shapes. 

As seen from Figs. 2 to 5, the behavior of the sys-
tem follows the same trend in all different cases, i.e., 
the natural frequencies of the system decrease by 
increasing of g and stabilizes for g values greater than 
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7. In fact, for g >>1 the FGM plate becomes a Nickel 
plate and the compound plate transforms into a lami-
nated plate with metal core as a host plate. 
 

7. Conclusion 

In this paper an analytical solution for free flexural 
vibration of a three-layered piezoelectric laminated 
FGM circular moderately thick plate is proposed 
based on Mindlin's first order shear deformation plate 
theory for the cases where the electrodes on the pie-
zoelectric layers are shortly connected. The material 
properties of the functionally graded substrate plate 
are assumed to be graded in the thickness direction 
according to the power-law distribution in terms of 
the volume fractions of the constituents, and the elec-
tric potential distribution across thickness of piezo-
electric layers is modeled by a sinusoidal function and 
the Maxwell equation is satisfied. The detailed 
mathematical derivations are presented. Emphasis is 
placed on investigating the effect of varying the gra-
dient index of FG plate on the free vibration charac-
teristics of the structure. The validity of the obtained 
results for some specific cases was crossed checked 
with other references as well as by obtained results 
from FEM solutions. It is further shown that for vi-
brating circular compound plates with specified di-
mensions, one can select a specific piezo-FGM plate 
that can fulfill the designated natural frequency. 
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Nomenclature----------------------------------------------------------- 

r0  : Plate radius 
t  : Time 
cij : Matrix of modulus of elasticity  
ur, uθ,,uz : Radial ,circumferential, transverse  
  displacements 

E
ijC   : Components of the symmetric  

  piezoelectric stiffness matrix  
Vc ,Vm, : Volume fraction of the ceramic and  
  metallic part  
Di : Electric displacement components  
w  : Transverse displacement of the  
  mid-plane 
e  : Permeability constant of  

  piezoelectric material  
∆, ∇  : Laplace & Gradient operators in  
  polar coordinate  
e  : Reduced permeability constant of  
  piezoelectric material  
ε , γ   : Membrane and bending strains 
E  : Young’s modulus   
ϕ  : Electric potential on the  
  mid-surface of the piezoelectric layer 
Ek : Electric field components  

,f pρ ρ  : FGM & piezoelectric mass density 
g : Volume fraction index  

iσ   : Stress components 
k : Mindlin’s shear factor  
υ : Poisson’s ratio 
hp , 2hf : Thickness of FG & piezo plate   
ω  : Natural angular frequency  
Im, Km  : Modified first kind and the second  
  kind of Bessel functions  

33Ξ , 11Ξ   : Dielectric constants (permittivity)  
  of piezoelectric layer 
Jm ,Ym  : First kind and the second kind of  
  Bessel functions  

11Ξ , 33Ξ  : Symmetric reduced dielectric  
  constants  
m  : Wave number in circumferential  
  direction  
ψr ,ψθ  : Rotations of vertical lines  
  perpendicular to the mid-plane, 
Mij,Qi  : Moments & shear force components 
 
Superscript  
f, p : The variable in FGM & Piezo layer 
r, θ, z  : Radial, circumferential & transverse  
  direction  
 
Subscript  

m, c : Metal & ceramic 
 

References  

[1] M. Koizumi, The concept of FGM, Ceram. Trans. 
Func. Grad. Mater., 34 (1993) 3-10. 

[2] M. Teymur, N. R. Chitkara, K. Yohngjo, J. Aboudi, 
M. J. Pindera and S. M. Arnold, Thermoelastic 
Theory for the Response of Materials Functionally 
Graded in Two Directions, Int. J. Solids Struct., 33 
(1996) 931-66. 

[3] E. Feldman and J. Aboudi, Buckling analysis of 
functionally graded plates subjected to uniaxial 



 F. Ebrahimi et al. / Journal of Mechanical Science and Technology 22 (2008) 1058~1072 1071 
 

loading, Compos. Struct., 38 (1997) 29-36. 
[4] Yang and H. S. Shen, Dynamic response of initially 

stressed functionally graded rectangular thin plates, 
Compos. Struct., 54 (2001) 497-508. 

[5] H. S. Shen, Nonlinear bending response of func-
tionally graded plates subjected to transverse loads 
and in thermal environments, Int. J. Mech. Sci., 44 
(2002) 561-584. 

[6] T. Bailey and J. E. Hubbard, Distributed piezoelec-
tric polymer active vibration control of a cantilever 
beam, J. Guidance, Control Dyn., 8 (1985) 605-611. 

[7] F. Peng, A. Ng and Y. R., Hu, Actuator placement 
optimization and adaptive vibration control of plate 
smart structures, J. Intell Mater Syst Struct., 16 
(2005) 263-271. 

[8] W. J. Spencer, W. T. Corbett, L. R. Dominguez and 
B. D. Shafer, An electronically controlled piezo-
electric insulin pump and valves, IEEE Trans. Son-
ics Ultrason., 25 (1978) 153-156. 

[9] S. Dong, X. Du, P. Bouchilloux and K. Uchino, 
Piezoelectric ring-morph actuation for valve appli-
cation, J. Electroceram., 8 (2002) 155-161. 

[10]  C. Y. K. Chee, L. Tong and G. P. Steve, A review 
on the modelling of piezoelectric sensors and actua-
tors incorporated in intelligent structures, J. Intel. 
Mater. Syst. Str., 9 (1998) 3-19. 

[11]  L. Cao, S. Mantell and D. Polla, Design and simu-
lation of an implantable medical drug delivery sys-
tem using microelectromechanical systems technol-
ogy, Sensors Actuators A, 94 (2001) 117-125. 

[12]  X. Chen, C. H. J. Fox and S. McWilliam, Optimi-
zation of a cantilever microswitch with piezoelec-
tric actuation, J. Intel. Mater. Syst. Str., 15 (2004) 
823-834. 

[13]  Y. Ootao and Y. Tanigawa, Control of transient 
thermoelastic displacement of a functionally graded 
rectangular plate bonded to a piezoelectric plate due 
to nonuniform heating, Acta Mech., 148 (2001) 17-33. 

[14]  J. N. Reddy and Z. Q. Cheng, Three-dimensional 
solutions of smart functionally graded plates, ASME 
J. Appl. Mech., 68 (2001) 234-241. 

[15]  B. L. Wang and N. Noda, Design of smart func-
tionally graded thermo-piezoelectric composite 
structure, Smart Mater. Struct., 10 (2001) 189-193. 

[16]  X. Q. He, T. Y. Ng, S. Sivashanker and K. M. 
Liew, Active control of FGM plates with integrated 
piezoelectric sensors and actuators, Int. J. Solids 
Struct., 38 (2001) 1641-1655. 

[17]  J. Yang, S. Kitipornchai and K. M. Liew, Non-
linear analysis of thermo-electro-mechanical behav-

ior of shear deformable FGM plates with piezoelec-
tric actuators, Int. J. Numer. Methods Eng., 59 
(2004) 1605-1632 

[18]  J. Yang, S. Kitipornchai and K. M. Liew, Large 
amplitude vibration of thermo-electric-mechani-
cally stressed FGM laminated plates, Computer 
Methods in Applied Mechanics and Engineering, 
192, (2003) 3861-3885. 

[19]  X. L. Huang and H. S. Shen, Vibration and dy-
namic response of functionally graded plates with 
piezoelectric actuators in thermal environments, J. 
Sound Vib., 289 (2006) 25-53. 

[20]  F. Ebrahimi and A. Rastgoo, An analytical study 
on the free vibration of smart circular thin FGM 
plate based on classical plate theory, Thin-Walled 
Structures (2008) Article in press DOI: 10.1016/ 
j.tws.2008.03.008. 

[21]  F. Ebrahimi and A. Rastgoo, Free vibration analy-
sis of smart annular FGM plates integrated with 
piezoelectric layers, Smart Mater. Struct., 17 (2008) 
no. 015044. 

[22]  A. J. Markworth, K. S. Ramesh and Jr. Parks, 
Modeling studies applied to functionally graded 
materials, J. Mater. Sci., 30 (1995) 2183-2193. 

[23]  J. N. Reddy and G. N. Praveen, Nonlinear transient 
thermoelastic analysis of functionally graded ce-
ramic-metal plate, Int. J. Solids Struct., 35 (1998) 
4457-4476. 

[24]  R. C. Wetherhold and S. Wang, The use of func-
tionally graded materials to eliminate or thermal de-
formation, Composite Sci. Tech., 56 (1996) 1099-1104. 

[25]  Y. Tanigawa, H. Morishita and S. Ogaki, Deriva-
tion of system of fundamental equations for a three 
dimensional thermoelastic field with nonhomoge-
neous material properties and its application to a semi 
infinite body, J. Thermal Stress, 22 (1999) 689-711. 

[26]  H. F. Tiersten, Linear piezoelectric plate vibrations, 
plenum press, New York, USA, (1969). 

[27]  D. O. Brush and B. O. Almroth, Buckling of bars plates 
and shells, McGraw-Hill, New York, USA, (1975). 

[28]  Q. Wang, S. T. Quek and X. Liu, Analysis of pie-
zoelectric coupled circular plate, Smart Mater 
Struct., 10 (2001) 229-239. 

[29]  R. D. Mindlin, Influence of rotary inertia and shear 
on flexural motions of isotropic elastic plates, J. 
Appl Mech., 18 (1951) 31-38.  

[30]  J. N. Reddy, Theory and analysis of elastic plates, 
Taylor and Francis, Philadelphia, USA, (1999). 

[31]  X. Liu, Q. Wang and S. T. Quek, Analytical solu-
tion for free vibration of piezoelectric coupled mod-



1072  F. Ebrahimi et al. / Journal of Mechanical Science and Technology 22 (2008) 1058~1072 
 

erately thick circular plates, Int. J. Solids Struct., 39 
(2002) 2129-2151. 

[32]  D. Halliday and R. Resnick, Physics, John Wiley 
and Sons, New York, USA, (1978). 

 

Appendices 

Some coefficients referred to in this paper are given 
as follows:  
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